Solid solution formation and uptake of Radium in the presence of barite

F. BRANDT1, K. KLINGENBERG1, V. L. VINOGRAD1,2, K. ROZOV1 and D. BOSBACH1

1Institute of Energy and Climate Research (IEK-6), Forschungszentrum Jülich, Germany; f.brandt@fz-julich.de (*presenting author), m.klingenbergr@fz-julich.de, k.rozov@fz-julich.de, d.bosbach@fz-julich.de

2Institute of Geosciences, Goethe University, Frankfurt (Germany); v.vinograd@kristall.uni-frankfurt.de

The phase relations in the BaSO4--RaSO4--H2O system may determine the solubility of radium in natural waters due to the formation of a solid solution. In the near-field of nuclear waste repositories for spent fuel, radium may enter a system in which barite is in equilibrium with the aqueous solution. Thermodynamically, a RaBaSO4 solid solution is expected to form as solubility controlling phase rather than RaSO4. However, due to a lack of reliable data, the solid solution system RaSO4--BaSO4--H2O is currently not considered in long term safety assessments for nuclear waste repositories. The solubility product of the pure RaSO4 endmember is poorly constrained between pK_{RaSO4} = 10.26 to 10.41 by only very few experimental data [1,2]. Published interaction parameters W_{RaSO4} of the RaSO4--BaSO4--H2O system varies in different studies [3,4] between 0.9 and 3.9 - 6.5 kJ/mol.

In this study we have combined experimental data, atomistic calculations and thermodynamic modeling to study in detail how a radium containing solution will equilibrate with solid BaSO4 under repository relevant conditions. Batch sorption experiments at close to equilibrium conditions indicate the formation of a RaBaSO4 solid solution. Our first principles calculations based on the single defect method [5] indicate a value of W_{RaSO4} = 2.5 ± 1.0 kJ/mol, implying a non-ideal solid solution. Thermodynamic assessment calculations indicate that the final experimental Ra(aq) concentration at room temperature and 90 °C can be matched with W_{RaSO4} = 1.5 kJ/mol and pK_{RaSO4} = 10.41.


The co-ordination of Boron in foraminiferal calcite

OSCAR BRANSON1, SIMON REDFERN1, KARINA KACZMAREK2, TOLEK TYLISZCZAK3 and HENRY ELDERFIELD1

1Department of Earth Sciences, University of Cambridge, Downing St, Cambridge CB2 3EQ, UK.

2Correspondence: ob266@esc.cam.ac.uk

3Alfred Wegener Institute, Am Handelsafen 12, D-27570 Bremerhaven, Germany. (Karina.Kaczmarek@awi.de)

ALS Beamline 11.0.2, One Cyclotron Road, MS 6K2100 Berkeley, CA 94720, USA. (TTyliszczak@lbl.gov)

The analysis of boron in foraminiferal calcite is a burgeoning palaeo-proxy for past ocean-acidification events [1]. This is particularly relevant to today’s ‘carbonated ocean’ [2]. However, considerable uncertainty surrounds the mechanisms of boron incorporation into the shell. Foraminiferal calcite is known to be highly chemically heterogeneous [3], and understanding how boron fits into this complex structure is central to our understanding of, and confidence in, this important proxy.

We have applied synchrotron NEXAFS spectroscopy to examine the distribution and coordination of boron in foraminifera at the nm length scale.

Figure 1: A Scanning Transmission X-ray Microscope (STXM) image of a section of foraminfera test at the trigonal B edge, showing variations in the concentration of B [4].

STXM results reveal clear homogeneity in boron concentration, which appears to be uniformly hosted in a trigonal coordination in the calcite crystal lattice (BO3 groups). Analysis of boron coordination is ongoing.